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THE SUPPLY AND DEMAND OF ALPHA
Harry Markowitz a, Robert Snigaroff b and David Wroblewski b

This paper analyzes the supply and demand for alpha by institutional investors and the
money managers who serve them. A large database of products offered by such managers
is used to estimate how the demand for such products increases as a function of achieved
excess returns and how the ability to produce such excess returns declines with increased
AUM (Assets Under Management). Static and dynamic (simulation) analyses are used to
explore some implications of these estimates.

1 Introduction

This paper presents a “lean” (parsimonious)
model of the supply and demand for alpha by
institutional investors and the money managers
that serve them. Based in part on similar analy-
ses for mutual funds and hedge funds, we began
with a presumption that money managers’ ability
to supply excess return declines withAUM (assets
under management) whereas the demand for their
services increases with observed (historic) alpha.
Both presumptions were confirmed. In particu-
lar, small products supply positive alpha and large
products do not.
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Our data is quarterly. By the amount demanded
this period (i.e., this quarter) we will mean the
inflow of funds rather than totalAUM. Inflow may
in fact be outflow, so inflow means net inflow
which may be negative. Because of differences in
the orders of magnitude of the sizes of products, it
is most convenient to express inflow as a fraction
of beginning-of-period AUM. The demand equa-
tion, therefore, has inflow as a fraction of AUM
on the left. On the right it has investment alpha,
plus a constant and a random term. In addition, it
has beginning-of-period AUM, since a product is
less likely to have a large percent inflow if it is a
large product than if it is a small product.

Of course the alpha in the demand equation can-
not be “true, current” alpha, since that is not
observable. We use past alpha, measured as out-
performance during the preceding three years.
We use three years because money managers are
usually expected to present performance for the
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preceding one, three and five years. Since we
sought to build a lean model, we chose just one
of these. Our hypothesis is that three-year perfor-
mance is the most important, and is a sufficient
one of the three measures.

Outperformance is defined to be portfolio return
less benchmark return. As in Sharpe (1992) the
benchmark for a product is not based on the name
of the product or what a money manager says is
its objective. Rather it is a weighted average of
certain asset class returns, with weights equal to
the regression coefficients of past product perfor-
mance against past asset class performance. For
us “alpha” is the geometric mean of the product’s
performance minus the same for its benchmark’s
performance.

The supply equation has the current year’s out-
performance (product return minus benchmark
return) on the left and AUM on the right.
As expected large products have more diffi-
culty outperforming their benchmark than smaller
products.

The lean model we present here is the result of
a process which began with a more complicated
model, including lagged endogenous variables,
that required simultaneous equation methods to
estimate. Successive applications of Occam’s
Razor peeled away whatever was found to be sta-
tistically or economically insignificant. The result
was a model which was not only leaner, but one to
which single equation methods could be applied,
separately, to the supply and to the demand equa-
tions. This allowed us to compare the estimation
results of OLS with those of “robust regres-
sion” procedures not available for simultaneous
equation estimation.

Over and above the fact that a quite lean model
worked as well as more complicated ones we
tried, and the fact that the fit coefficients have the
right signs, the following two empirical results

seem to us to be noteworthy: the ability to supply
alpha declines with increasing AUM, as antici-
pated, but alpha is positive for sufficiently small
AUM (not certain a priori) and it crosses from
positive to negative at productAUM equal to $300
million, a relatively low size for an institutional
product.

The second surprise for the authors was the extent
to which the success of a product was due to
luck. We knew, of course, that each equation
has a random term, which we fit, using alter-
nate assumptions as reported below. But it was
not until we examined simulation outputs that we
realized the extent to which a product can rapidly
have great success or failure depending on the
luck of the draw on the supply and demand sides.

The remainder of this paper is organized as fol-
lows: Section 2 acknowledges prior work on the
supply of and/or demand for alpha; Section 3
presents our formal model; Section 4 describes
the data used to fit the parameters of the model;
Section 5 describes the methodology used to
make estimates; Section 6 presents the regression
results and some static analysis implications; Sec-
tion 7 explores the dynamic aspects of the model
using simulation analysis; Section 8 pulls together
“the story” told by the analyses of the preceding
sections.

2 Literature review

Our study simultaneously analyzes the supply
of alpha by institutional money managers and
the demand for manager’s services (asset flow)
by institutional investors. The majority of prior
studies focus on mutual and hedge funds. We
however focus on institutional money managers.
Perold and Salomon (1991) model theoretical
trade costs to argue that as assets under man-
agement increase, returns should decrease. They
suggest that the “right amount of assets under
management” are “surprisingly small” given trade
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costs. Christopherson et al. (2002) and Allen
(2007) find empirically a negative relationship
between product AUM and excess return across a
wide variety of asset classes in the institutional
investor universe. Many mutual fund studies
study alpha generation given growing fund size,
examples including Indro et al. (1999), who state
that returns become negative when a mutual fund
exceeds its optimal fund size, and Grinblatt and
Titman (1989), who point out that superior perfor-
mance may in fact exist in certain styles and with
small assets. Our research is also consistent with
that of Chen et al. (2004) who find that lagged
assets are negatively related to performance.

In the hedge fund arena, papers focusing on the
supply of alpha as a function of AUM include
Fung et al. (2006), who find that capital inflows
adversely affect ability to produce alpha in the
future, while Gregoriou and Fabrice (2002) on
the other hand suggest that the size of a hedge
fund or a fund-of-hedge-funds has no impact on
its performance. Their study deals with returns
of hedge funds and funds-of-hedge-funds from
1994 to 1999. Liang (1999) also writes that
the average hedge fund returns are related pos-
itively to the size of the fund. Boyson (2008)
studies hedge funds as well and finds that per-
formance persistence is strongest among small,
young funds.

In a study involving international markets Keim
et al. (2000) show a significant negative rela-
tionship in returns and portfolio size in many
countries, including eight European countries. An
Australian equity funds study in the institutional
sphere, by Martin and Gallagher (2005), finds no
statistically significant performance differences
(net of expenses) between funds on the basis of
portfolio size. However, the main finding in the
majority of these papers involving the ability to
supply alpha asAUM grows, is that as assets under
management grow, alpha diminishes.

The other side of our topic relates to the demand
function, namely, the impact that performance
has on the inflow of assets on the demand for
manager’s services. Again much of the literature
is in the mutual fund setting examples including
Gruber (1996), who finds that the flow of new
money into the best performing funds is much
larger than the flow of money out of the poorer
performing funds. Hendricks et al. (1993) state
that, directly or indirectly, investors in mutual
funds are willing to act on such information
of relative performance. Chevalier and Ellison
(1997) also discuss the relationship between the
inflow of assets and returns in a mutual fund set-
ting. Ippolito (1992), Sirri and Tufano (1998),
Karceski (2002), and Lynch and Musto (2003)
all discuss how inflows follow good performance
in a mutual fund setting.

In the hedge fund arena Wang and Zheng (2008)
indicate that hedge fund investors as a group
chase past aggregate performance. Baquero and
Verbeek (2007) find that money inflows are sen-
sitive to past long-run performance and Adams
(2007) find performance influences asset flows.

Although we are unaware of previous literature
related to using a simultaneous equation model
to estimate the supply and demand of alpha and
managers services, Snigaroff (2000) discusses the
supply and demand of active management, and
how over or under demand can affect alpha. Berk
and Green (2004) study an equilibrium where the
demand and supply intersection is driven towards
alpha equal to zero as investors supply funds to
managers that result in managers decreasing their
ability to supply alpha, which they study empiri-
cally in a mutual fund setting. Snigaroff argues
that agency issues within plan sponsor organi-
zations can lead to buyers’ over-demand which
leads to alpha equilibriums of less than zero, con-
sistent with the results shown here. Goyal and
Wahal (2008) and Stewart et al. (2009) provide
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recent studies that view institutional flows into
and out of asset manager products. Both use com-
prehensive but different databases to address the
question, “Does subsequent performance war-
rant plan sponsor’s decision for product change?”
They find that it does not. Although their focus
is on individual product performance after a hire
or fire decision, the latter finds products with the
most inflows performed worse than those with the
most outflows. The former note that investment
managers who lose a larger fraction of assets have
higher post termination returns. Both of these
views are consistent with our theme. Finally, in
the hedge fund setting Getmansky (2003) mod-
els a concave relationship between performance
and assets-under-management and relates asset
inflows to performance. The paper also describes
an optimal asset size that can be obtained.

Overall there is a growing literature on the asset
manager size impact on performance and that of
performance’s influence on the inflow of assets.
Our contribution to the subject is (1) our use
of a simultaneous equation form to model the
interaction of demand (asset flow) with supply
(excess return), and (2) with its application to the
institutional side of the story.

3 The model

This paper presents a lean model of the supply
and demand for alpha by institutional investors
and the money managers who serve them. This
lean model is the result of a winnowing process in
which we deleted, from somewhat more complex
models, variables whose coefficients proved to
have little statistical or economic significance.1

The result was the following model of the demand
and supply equations, respectively:

log(1 + It) = log(ad) + bdlog(1 + αt)

+ cdlog(At) + log(udt) (1)

log(1 + et) = log(as) + bslog(At)

+ log(ust) (2)

where

ri : is the return on the product during quarter
t;

BMt : is the return on the benchmark during
quarter t;

et : is the excess return which the manager
achieves during quarter t, namely,
rt − BMt;

At : is AUM at the beginning of quarter t;
αt : is 3

√∏12
i=1 (1 + rt−i) −

3
√∏12

i=1 (1 + BMt−i); and
It : is the inflow of funds during quarter t, net

of return and as a fraction of beginning-
of-period AUM, namely,
It = At+1

At(1+rt)
− 1.

The random series udt and ust are i.i.d. In the
simulation analysis of Section 7 they are assumed
to be lognormal. Equations (1) and (2) imply

1 + It = ad(1 + αt)
bd(At)

cdudt (3)

1 + et = as(At)
bsust (4)

The logarithms in Equations (1) and (2) can be to
any base. The At series satisfies

At+1 = At(1 + rt)(1 + It). (5)

In particular, a product can grow in size if its
return rt is positive, even if the product experi-
ences an outflow.

4 Data

To fit the coefficients of Equations (1) and (2) we
used the eVestmentAlliance U.S. Equity Universe
database of vendors to institutional investors.
Specifically, we consider the performance and
the demand for various “products” offered by
such vendors. A product is a particular invest-
ment strategy managed by a team of investment
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professionals. Within a particular strategy or
product there may be several different vehicles,
e.g., a separate account composite, institutional
mutual fund, comingled ERISA fund, or comin-
gled Non-ERISA fund, etc. For performance we
use the separate account composite vehicle cor-
responding to each product as the returns for the
product. Our product assets under management
variable is the totalAUM associated with the prod-
uct or the aggregate of all of the vehicle’s AUM
associated with a product.

For example, Pyramis GlobalAdvisors Large Cap
Value is an example of a product as is Pyramis
Global Advisors Large Cap Core; however, the
aggregation of these two products is not a product.
Within the Pyramis Large Cap Value product they
list two different vehicles: a comingled ERISA
fund and a separate account composite. We use the
separate account performance (managers rarely
reported other vehicles) to represent the Pyramis
Large Cap Value product performance. For the
product AUM, we use the total assets under man-
agement contained in both vehicles but do not
include Pyramis GlobalAdvisors Large Cap Core.

Within the eA All US Equity major class we
included products that fall into one of the follow-
ing of its mutually exclusive subclasses:

eA LargeCap Equity,
eA MidCap Equity,
eA SmallCap Equity,
eA AllCap Equity,
eA MicroCap Equity,
eA SmallMidCap Equity,

each of which contains value, growth, and core
styles. In our regression analyses, “returns” are
net of fee.

For the present discussion we define an “obser-
vation” to be a combination of a product and a

quarter. In the first instance we selected obser-
vations, during the period Q2/1998–Q3/2008,
which met the following criteria:

– The observed product reported returns for 13
consecutive quarters (i.e., the “current” quarter
and the 12 preceding).

– The observed product reported AUM for the
current and preceding quarter.

These specifications were determined by the
requirements of the regression analysis.

We are only considering products with at least
$25 million in AUM. This cutoff value was cho-
sen on the basis of outlier analysis and lead to
the deletion of observations which reduced the
sample size from 42,283 observations to 38,521.
$25 million is the amount of firm AUM the SEC
requires before requiring a firm to be a registered
investment advisor.

The computation of the alpha of a product requires
that we assign a benchmark to each product.
Rather than use the product’s stated benchmark
we regressed the preceding 12 quarters of return
against four benchmark series for the same period.
The benchmark for the product at that time was
assumed to be the weighted average of the four
possible benchmarks, weighted by these regres-
sion coefficients. This was used in computing the
past alpha for the product that quarter (ex ante)
and in computing the excess return (ex post) in the
forthcoming quarter. The benchmark return series
used were four Russell indices: 1000 Growth,
1000 Value, 2000 Growth, and 2000 Value.

The columns of Table 1 show, respectively: the
series (i.e., the Russell benchmarks used, or
the performance of all managers in the sam-
ple); the periods covered; and their respective
arithmetic means, geometric means, and stan-
dard deviations of quarterly returns for the sample
period.
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Table 1 Quarterly return series.

Time period 4/1998–9/2008

Series Arith. mean Geo. mean Std. dev

Russell 1000 0.0058 0.0002 0.1069
Growth

Russell 1000 0.0130 0.0101 0.0774
Value

Russell 2000 0.0125 0.0034 0.1365
Growth

Russell 2000 0.0218 0.0176 0.0931
Value

Sample Products 0.0123 0.0084 0.0876

This table shows the quarterly return statistics of the benchmarks
and of products used in our sample.

5 Parameter estimation procedure

The data described in the preceding section was
used to estimate the parameters of Equations (1)
and (2). While the two equations interact, as illus-
trated in our simulation runs, they do not need
to be estimated simultaneously. Specifically, the
alpha variable in Equation (1) depends only on
previous excess returns from Equation (2), the
excess return term in Equation (2) depends only
on the beginning-of-period AUM, and the error
terms of the two equations are independent of each
other as well as independent of the right-hand
side variables in both equations. Consequently,

Table 2 Cauchy method robust estimates.

Demand equation Supply equation

Constant ln (1 + α) ln (AUM) Constant ln (AUM)

Estimate −0.00840 0.46591 −0.00213 −0.00083 −0.00068
t-stat −21.97 61.05 −9.42 −5.59 −7.56
Std. err est. 0.00038 0.00763 0.00023 0.00015 0.00009

The authors estimated the parameters of the supply and demand equations using OLS and eight robust methods. The
Cauchy method turned out to be the median estimate for every parameter. This table lists the regression results of
the Cauchy method. Specifically, regression coefficients along with their corresponding t-statistics and standard error
estimates are listed for both the demand and supply equations given in Equations (6) and (7).

ordinary least squares (OLS) provides unbiased
estimates for the parameters of each equation,
estimated separately.

However, we believe that some form of robust
estimation procedure will provide more “repre-
sentative” results than will OLS. This is not only
due to possible data errors. For example, if our
objective were to estimate the “typical” wealth
of people employed in Redmond, Washington,
then a robust estimator like the median would not
be affected by Bill Gates’ wealth, whereas mean
wealth would be influenced substantially. Simi-
larly, it is the median housing price rather than
the mean housing price that is reported as repre-
sentative. The median versus the mean is a special
case of robust versus OLS regression, namely, the
case in which there are no independent variables
on the right-hand side.

MatLab supplies nine methods for fitting the coef-
ficients of linear equations. One of these is OLS;
the other eight are various methods of robust
regression. We fit coefficients using all the nine
methods. In the case of every coefficient, the OLS
estimate was an outlier as compared to the other
eight and, as it turned out, the Cauchy method of
weighting observations provided the median esti-
mate of each coefficient. The Cauchy estimates,
used in our simulations are listed in Table 2, along
with their t-stats (all significant at the 1% level)

First Quarter 2011 Journal Of Investment Management



10 Harry Markowitz et al.

and their standard errors of estimation. The results
for all methods are presented in Wroblewski et al.
(2009). DuMouchel and O’Brien (1989), Holland
and Welsch (1977), Huber (1981) and Street et al.
(1988) are the references to robust regression cited
by MatLab.

In addition to regression coefficients, our sim-
ulations need estimates of the standard devia-
tions of the random terms of Equations (1) and
(2). The observed deviations from the regres-
sion fit in Equations (1) and (2) are due to
two sources. Specifically, we must distinguish
between the between-product variability and the
within-product variability. As is well known,
the variance of each residual term is the sum
of its within-product variance and its between-
product variance. For the purpose of the simula-
tion we need to use the “typical” within-product
variance.

To estimate this we sorted the residuals from
the (Cauchy robust) regression supply residuals
(demand residuals) into “buckets,” one bucket
per product, and computed the within-bucket
variance for each product, corrected for degrees-
of-freedom. The results of these calculations are
shown in Table 3A for demand residuals and
Table 3B for supply residuals.

The first line of each table shows the break-
down of total variance between within-product
and between-product variance, not corrected for
degrees-of-freedom. (Note that, for both the sup-
ply and demand residuals, the within-product
variances are much larger than the between-
product variances.) The second lines show the
respective standard deviations. It is, of course, the
within- and between-product variances—rather
than their standard deviations—which sum to that
of the total.

The next two lines of each table summarize the
results of correcting the within-product variances

Table 3 Residual decomposition.

Within Between
products products Total

A. Demand residuals
Variance

(uncorrected)
0.05947 0.00883 0.06830

Standard
deviation

0.24386 0.09397 0.26134

Mean corrected
variance

0.09640

Median corrected
variance

0.01377

Square root of
mean variance

0.31048

Square root of
median
variance

0.11732

B. Supply residuals
Variance

(uncorrected)
0.00120 0.00009 0.00130

Standard
deviations

0.03468 0.00963 0.03599

Mean corrected
variance

0.00139

Median corrected
variance

0.00075

Square root of
mean variance

0.03728

Square root of
median variance

0.02731

This table shows the decomposition of the total residual variance
for the demand and supply equations into a within-product vari-
ance and a between-product variance. The simulation uses the
within-product variance. We also correct for degrees of freedom
within each product and display the mean and median of this
corrected variance, across all products, as well as the associated
standard deviation.

for degrees-of-freedom. The first of these lines
shows the mean of the corrected variances, the
second shows the median. The following two
lines show corresponding standard deviations,
namely, the square roots of the mean of the
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corrected variances and the median of the cor-
rected variances.

Since there is a substantial difference between
the mean and the median of the within-product
variances, we ran our simulations with a range
of estimates, to observe the sensitivity of the
simulation results to these parameters.

6 Regression results

The robust Cauchy fit coefficients for Equa-
tions (1) and (2) are

ln(1 + It) = −0.0084 + 0.4659 × ln(1 + αt)

− 0.0021 × ln(At) (6)

ln(1 + et) = −0.00083

− 0.00068 ln(At). (7)

The coefficients reflect the fact that It and et are
quarterly observations. At , of course, is as of a
point in time, namely, the beginning of quarter t.

These results are illustrated in Table 4. The first
column shows various AUM in billions of dollars.
The second column shows the expected quarterly

Table 4 Expected inflow and excess return as a
function of AUM.

Supply equation Demand equation
excess return inflow (percent

AUM (percent per quarter) per quarter)

0.01 0.23 0.58
0.10 0.08 −0.21
1.00 −0.08 −0.99

10.00 −0.24 −1.76
100.00 −0.40 −2.53

This table illustrates the results of the regression analyses for
the supply and demand equations. The first column lists various
levels of AUM. The second column shows the estimated excess
return per quarter that the product would achieve with that level of
AUM. The third column shows the associated inflow or outflow
per quarter, assuming the excess return in the second column
(annualized) is the observed alpha.

excess return of the product according to Equa-
tion (7). In particular, expected excess return is
positive at $0.1 billion and negative at $1.0 bil-
lion. Setting e = 0 in Equation (7) we see that,
according to this equation, excess return crosses
from positive to negative at a product size of $295
million. In other words, below an AUM of about
$300,000,000, average products produce excess
return; above it, they do not. At a product size
of $10 billion, expected underperformance is 24
basis points per quarter: almost 1% per annum.

The third column of Table 4 shows the estimated
inflow or outflow at the various AUM. If there
were no random terms in either Equations (1) and
(2), nor in the benchmark return, and At were
at the deterministic equilibrium value implied by
Equations (5)–(7), then the same value of At

would repeat each quarter, resulting in the same
excess return each quarter. This repeated excess
return, annualized, would then be the αt in Equa-
tion (6). This alpha, together with the At from
column 1, was used in Equation (6) to obtain
the resulting inflow or outflow reported in col-
umn 3. For example, the third line of the table
shows that a product with an AUM of 1 (billion
dollars) has an (expected) excess return of nega-
tive eight basis points per quarter which, at that
level of AUM, leads to an (expected) outflow of
almost one percent per quarter.

But a negative inflow (i.e., an outflow) does not
necessarily mean that AUM falls. To obtain the
change in AUM one must sum the product’s
inflow (or outflow, if negative) plus its excess
return, plus the return on the benchmark, in accord
with Equation (5) (neglecting the rtIt term, for
the moment and using the fact that return rt is
the sum of benchmark return and excess return).
Thus if the benchmark returned 2% per quarter,
a 10 billion dollar product would approximately
hold its own. At 1.94% per quarter, which com-
pounds to 8% per annum, an exact calculation
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(including the rtIt term) shows static equilibrium
at $8.02 billion (see Wroblewski et al., 2009). For
a benchmark return of 7% per annum (1.71% per
quarter), as assumed in the simulation reported
in the next section, the static equilibrium is only
$4.53 billion.

7 Simulation analysis

The previous section described model equilib-
rium if the supply and demand equations had
no random terms and the benchmark were con-
stant over time. We used simulation analysis to
analyze system dynamics including its random
terms. Specifically, we ran simulation analyses
using the coefficients in Equations (6) and (7) with
varying estimates of σd and σS, and with varying
means and standard deviations of the benchmark.
The results varied numerically, depending on the
inputs, but the qualitative characteristics were the
same for all cases considered. In this section, we
first present one of these cases, and then discuss
the sense in which the results of the other cases
were qualitatively the same. SeeWroblewski et al.
(2009) for details of the other cases.

In the case presented here we assume that the
benchmark has a geometric mean of 7% per
annum2 and a standard deviation of 20% per
annum; and that the demand and supply standard
deviations are σd = 0.20 and σs = 0.025 per
quarter. The σ2

d used here is between the mean and
the median variance of the historic within-product
variances, corrected for degrees of freedom. The
σ2

s is roughly the median corrected within-product
variance of the supply equation.

Figures 1–4 show the results of 500 simulation
runs. In each run a simulated product (already
in existence) starts the run with a $1 billion AUM
and 12 preceding quarters with zero excess return.
From this common starting point, 500 alter-
nate histories of “the product” evolve according

Figure 1 For one of many simulated cases, this figure
displays the average-to-date quarterly excess return,
for 50 years worth of quarters, for 500 runs (repli-
cations) of the case. The light blue lines show this
average for each run. The dark blue lines show the
cross-sectional average, and that plus or minus twice
the cross-sectional standard deviation. After 50 years
the average of the average-excess-return-to-date was
a negative nine basis points per quarter.

to Equations (5)–(7) from 500 series of i.i.d.
lognormal draws of ud, us and the benchmark.

For each of the 500 random replications, Figures 1
and 2 plot the cumulative average excess return:

ēt = 1

t

t∑
i=1

ei, for t = 1, . . . , T (8)

for T equal to 200 (50 years worth of quarters) in
Figure 1, and 2000 (500 years worth of quarters)
in Figure 2. (We ran the simulation for 500 years
to see if the simulations converged to equilibrium,
and how long it took to get there.) If ei were i.i.d.,
the strong law of large numbers says that ē would
converge almost surely to the expected value of
ei. The result for each individual run is a light blue
line. The solid dark blue lines in the two figures
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Figure 2 This figure is the same as Figure 1
except that average-to-date excess quarterly returns
are shown for 500 years. By this time the average
of the average-to-date excess returns is a negative 13
basis points per quarter. The purpose of such long
simulated to runs is to examine the convergence prop-
erties of the model. One clear conclusion is that, by
human standards, the model takes a very long time to
converge.

show the cross-sectional mean, and the mean plus
and minus two standard deviations, averaged at
time t over the 500 replications. The broken hori-
zontal line is the ē = 0 line. By the end of the 50th
year ē was roughly a negative nine basis points per
quarter, and by year 500 it was a negative 13 basis
points per quarter.

Figures 3 and 4 show At for t = 1, . . . , T ,
where T = 200 and 2000 quarters, respectively.
Because of large differences in the product AUM,
a semi-log plot is used. We plot log (AUM)
rather than 1

t

∑t
i=1 log (Ai), since log (At) is

itself already a sum, as seen by taking the logs
of both sides of Equation (5).

The dark green lines in Figures 3 and 4 show
the AUM’s which are the antilogs of the cross-
sectional mean log AUM and the mean log AUM

Figure 3 This figure displays theAssets Under Man-
agement (AUM) for the same 500 simulated products
as in Figures 1 and 2. In each case initially AUM = 1.0
billion dollars. Note that after only ten years, repli-
cations of the identical products—except for the luck
of the draw—range from of a mean-minus-two-sigma
of about 0.1 billion dollars to a mean-plus-two-sigma
of 10 billion dollars. By the 50th year the mean-plus-
and-minus two sigma range is from about 0.01 billion
to about 100 billion.

±2σ (of the log AUM) computed over the 500
replications represented by the light green lines.
After 50 years the cross-sectional geometric mean
(i.e., the antilog of the arithmetic mean of the log
AUMs) is $2.22 billion; by the end of 500 years
it is $4.33 billion, as compared to $4.53 billion
for the static calculation. As of year 50, the cross-
sectional standard deviations are still increasing.
By year 500 (in fact, by roughly year 150) the
cross-sectional standard deviation has converged
to a steady state. Figure 3 shows that after about
10 years, for example, the plus and minus two
standard deviation lines incorporate a large range
of AUM, from under $100 million to over 10 bil-
lion dollars, depending on the luck of the draws
with respect to the us and ud. This range keeps
expanding as just noted.3
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Figure 4 As in Figure 3, this figure shows simulated
AUM for 500 cases, but here for 500 years rather
than 50. The cross-sectional geometric mean of the
AUM converges to $4.33 billion, with AUM close to
its ultimate value after about 100 years. As noted on
Figure 2, we realize that these are beyond product life-
times, but we ran the model out for 500 years to see
its convergence properties.

In addition to the case presented here, we sim-
ulated various other cases: with the geometric
mean of the benchmark varying from 6% to 9%
per annum, with σd varying from 0.068 to 0.300
and σs equal to 0.025 or 0.035. In the cases tried,
the results were qualitatively the same as the case
reported in Figures 1–4, in the sense that,

• Average AUM increased during the first 50
years (by about two-fold to about five-fold
depending on case parameters) and continued
to increase over the next 450 years (by roughly
another factor of two).

• Average excess return was negative at the
50 year mark, and even more so over 500
years.

• The model converged, but very slowly in terms
of human (and product) time scales.

The most striking feature of all cases was the
great dispersion of results both in the short and
long run. If we examine the first few years of the
product’s existence—even though each case rep-
resents a randomly drawn path of essentially the
same “representative” product—there are huge
differences in AUM, and consequent differences
in expected returns, depending on the luck of
the draw.

8 The story

Our data and analysis tell the following story
concerning products offered by vendors to institu-
tional investors. We considered products at points
in time at which they had been in existence for
at least 13 quarters and had at least $25 million
under management. Among such products we find
that—on average—the smaller products outper-
form their benchmarks and the larger products do
not. The break-even level is about $300 million.
An order-of-magnitude increase in AUM leads to
a decrease in excess return of about 16 basis points
per quarter (64 basis points per annum).

Products can grow in size despite negative excess
returns as long as, on the demand side, the out-
flow of funds is less than the internal rate of
growth of the product. The level of AUM at which
outflow equals internal growth, so that the size
of product is stationary, depends on benchmark
growth, since return is benchmark return plus
excess return. Thus the static analysis did well in
telling us where the dynamic analysis was headed
but, of course, did not tell us how long it would
take to get there. If we use the fit coefficients and
a benchmark growth rate of 7% per annum, the
static calculation, assuming us = ud = 0 and no
variance of the benchmark, shows an equilibrium
of $4.53 billion, whereas the dynamic simulations
show anAUM equilibrium of $4.33 billion. In par-
ticular, a lower equity premium means a smaller
equilibrium asset manager size.
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The supply and demand equations have substan-
tial quarter-to-quarter variability (on the demand
and on the supply side) for a given product. This
quarter-to-quarter variability is much larger than
the variability between products. As a result, in
the short run equally good products can expe-
rience substantial differences in performance,
leading to great differences in inflow and conse-
quent orders of magnitude differences in AUM—
depending on the luck of the draw. In the long
run, the cross-sectional distribution of the cumu-
lative average of excess returns and the cross-
sectional geometric mean of AUM converges,
but very slowly in terms of human and product
lifetimes.

Notes
1 The following variables were considered in models lead-

ing up to the lean model presented in the text.

Demand only:

1. Current AUM.

Supply only:

1. Number of Holdings (lagged one year).

Demand and supply:

1. Change in real GDP.

2. Weighted average of the number of portfolio managers
(PM) and the number of analysts.

3. Number of products in firm.

4. Lagged inflow.

5. Lagged alpha (3yr alpha-lagged one year).

In addition to low economic or statistical significance,
variables were deleted because reliable quarterly data
was not available. Often quarterly data would be reported
but, suspiciously, would be the same each quarter of the
year. Inclusion of these variables would have required us
to use annual data and a shorter time period. This would
have cut our sample size by more than a factor of four. In
particular, we would have had a maximum of eight obser-
vations per product line rather than the current maximum
of 42.

2 Mindful of arguments such as those of Arnott and
Bernstein (2002) that rate of return seen over the past
many decades should not be expected in the future, since
there was a great increase in valuations over the period.

3 Since theAUM converges in nominal terms, over the long
run it must approach zero in real (constant dollar) terms
as long as the inflation rate exceeds zero. This is not
a necessary implication of the model in Equations (1)
and (2), but implications of the statistical fit reported
in Table 2. For a model consistent with Table 2, but
without real AUM asymptotically zero, we could drop
the assumption implicit in Figures 1–4, that all repli-
cations of “the product” remain “forever,” and no new
ones come into existence. We could, instead, assume
that those products whose real AUM falls below some
lower level disappear and (on average) an equal number
of new ones keep appearing with a real $1 billion starting
value.
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