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A Network Value Theory of a Market, and Puzzles
Robert Snigaroff and David Wroblewski

By considering the stock market as a network that impounds liquidity and information production,
the authors were able to study its influence on aggregate stock value and value from dividends.
Market participants and practitioners impart value through the network of activity they form. The
authors offer a network value model that can price this value and help solve such financial economic
puzzles as the equity premium, stocks’ inverse inflation relationship, and lack of news. 

he information and liquidity infrastructure
of the public stock market is a complex and
valuable network that has been in continu-
ous existence for several hundred years.

Ironically, it is assigned no value in frictionless
market and complete information models. Indeed,
in the popular press, investment valuation practi-
tioners are even compared to “monkeys” and
“dartboards.” The premise of our study is that the
infrastructure built by market participants and
practitioners not only is valuable and material but
also can be measured. With that in mind, we built
a model to measure the infrastructure, proceeded
to show that the model fits actual prices well, and
then used it to help solve the equity premium,
inverse inflation, and market-making-its-own-
news puzzles. We developed our model by adding
to the dividend discount model (DDM) of Williams
(1938) and Gordon and Shapiro (1956).

Shiller (1981) relied explicitly on the DDM to
build an efficient market model1 and, by approximat-
ing the index level, Pt, with

(1)

where Dt are the dividends and r is the discount rate,
suggested that variability in the numerator is too
small to justify the volatility in stock prices. Mehra
and Prescott (1985) argued that a consumption-
based utility model justifies a much smaller equity
premium than is usually observed. That the com-
pound growth rate of the index level, Pt, over time
has been so large relative to that of both Equation 1
and bonds presents a conundrum: the equity pre-
mium puzzle. Fama and Schwert (1977) and others
have pointed out that stocks have an inverse infla-

tion relationship. When inflation occurs, companies
should be able to raise their prices. Their customers
should receive (or expect) higher nominal wages
and be willing to pay a company’s higher prices;
hence, company revenues should rise, leading to a
rise in nominal earnings and dividends, according
to Fisher (1930). The difficulty in understanding
why this mechanism should not be enough to offset
a rise in the discount rate is often called the inverse
inflation puzzle. Finally, the market frequently
experiences very large movements that seem unre-
lated to any component of Equation 1—that is, the
market seems to make its own news.

These are admittedly simplistic renderings of
complex puzzles, each of which has an active and
extensive literature replete with proposed solutions.
A simple approach to solving these puzzles, which
might otherwise seem unrelated, is to assume that
the DDM is incomplete. The incompleteness of the
DDM (and of asset pricing models in general) is hard
to see for two reasons. First, there is no promised or
expected cash flow (beyond dividends and buy-
backs) from the companies themselves. Second,
ignoring Hayek’s information argument (1937),
asset pricing theory starts with the assumptions that
markets are complete, all investors have all informa-
tion, and securities are perfectly liquid. By not mak-
ing these simplifying assumptions, we were able to
study what happens to asset prices vis-à-vis the
changing level of market “completeness.”

We assumed that all the activities of market
participants form a “network.” We could then
abstract the value of this network from the level of
its network traffic—that is, its volume of trading
on the NYSE, the leading U.S. stock market for the
108-year span that we studied (for econometric
reasons discussed later in the article, we used turn-
over).2 This network has value that is similar to the
network value of the worldwide internet. The
activities of market participants who build this
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network produce value: thus, our “network value
theory.” Although modeling the value contributed
by the network components of liquidity provision,
information production, and even participants’
confidence in the functioning of the network is
straightforward,3 we did not do so in our study (in
the network literature, this approach is deemed a
“macro-network” argument). We abstracted from
volume the changes over time in our network value
(NV) function and decomposed stocks’ value from
dividends alone and the NV component to study
their asset pricing effects. 

Network Value Model
Our network value model contains the following
components:

Pt = the beginning of time t index level
Dt = the dividends paid at the end of time t
TOt = the share turnover over the period t – 1

and ending at time t
N = a general time series used as a proxy for

the production of the network
Rt = the total return over the period t
It = the information set available to inves-

tors at time t
E(·) = the expectation operator
The simple efficient market model begins with

the definition of total return, Rt—namely, that the
return is given by a capital gain contribution and a
dividend contribution:

(2)

By assuming that the conditional expectation of Rt
with respect to the information available at time t
is constant, one obtains the following formula:4

(3)

Equation 3 is the classical DDM, with the discount
rate equal to r after dividing through by Dt–1. It
models the price with a sum of discounted expected
future dividends. Although the idea of discounting
future cash flows is both intuitive and useful, we
believe that it misses the value given to stocks by
the market’s functioning as a network. The mar-
ket’s existence raises security prices, which, in turn,
lowers one-step-ahead future returns. We account
for this decrease in future returns, which arises
from an increase in current prices, by adding a
factor to our return equation. This addition also
allows us to capture and quantify the additional
network value. Proxies for the production of the
network, N, could include the number of investors,

brokerage revenues, the price of exchange seats,
turnover, and other measures. We do not use a
nontransformed N alone for this factor because we
believe that the value added by the market network
is not simply linearly related to N but, rather,
includes the notion of increasing followed by
decreasing returns to scale. 

Modeling network growth as an S-shaped
function is common practice in the network litera-
ture (for a discussion and summary of functional
forms, see Swann 2002). Until the market reaches
“critical mass”—the idea that a network needs to
grow to sufficient size in order to overcome what
Rohlfs (1974) called the “start-up problem” (see
also Marris 1964; Artle and Averous 1973)—the rate
of change of the network function slowly increases.
After some level of production, our function has a
negative second derivative because the rate of
change decreases after the market reaches a fully
functioning level. We shift our function to pass
through the origin in order to signify that if a mar-
ket does not exist, the network adds no value. With
respect to financial markets, participants have long
observed similar growth patterns for many differ-
ent markets and instruments. Moreover, S-shaped
growth functions are commonly assumed (and
demonstrated in virtually all microeconomics
texts) for the general growth of products, markets,
and even economies. With that in mind, we define
function N5 by using the normal distribution’s
cumulative distribution function and arrive at the
heart of our model:

(4)

The constant, , represents the discount rate. Unlike
in the DDM, however, we allow for the return
estimate to change over time on the basis of our NV
function,  (see Appendix A for more details). On
the right-hand side of Equation 4, the first term can
be viewed as the expected proportional cumulated
growth in dividends and the second term as a
covariation between the network production func-
tion and the proportional cumulated growth in
dividends. Thus, we assume that the index level is
determined not only by an expected future divi-
dend stream but also by a value from a network.

An important distinction should be made
between Equations 3 and 4. The latter differs from
the DDM in that it expresses the price not only as a
sum of discounted expected future dividends but
also with an additional sum of discounted expected
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future covariation terms involving the network
proxy and dividend processes. Although the first
term in the network value model (NVM) is very
similar to that of the DDM in that it also is a sum of
discounted expected future dividends, it is subtly
different. Because the second term is positive and
both models are expressions of the price, P, the first
term in the NVM must be smaller than the corre-
sponding sum in the DDM. This condition is met
by using a discount rate, , in the NVM that is larger
than the discount rate, r, in the DDM.

Approximating the DDM and the NVM.
Shiller (1981, 1992) provided a well-known efficient
market DDM that defines  as

(5)

so that P* is the present value of the infinite future
dividend stream. Shiller’s model also states that the
market is efficient and that the true price—in this
case, the index level—is

(6)

In the same spirit, our NVM adopts similar nota-
tional definitions:

(7)

(8)

(9)

We use P** in Equation 7 to differentiate it from
Shiller’s P*. Under these definitions, we have

(10)

P** and P† are disaggregated components of P (†,*),
which approximates the price, P. This decomposi-
tion is very useful in understanding the compo-
nents of stock returns and how they may contribute
to the asset pricing puzzles that we discuss later in
the article.

Although P* and P (†,*) are never observable,
we may approximate these values ex post by trun-
cating the infinite tail. Following Shiller (1981,
1992), we fix a terminal value (PT = P2009) that
corresponds to the actual index level in 2009 and
use the following recursion to approximate P* by
working backward from terminal time T:

(11)

Similarly, we may approximate P(†,*) by using the
recursion

(12)

This approach provides a procedure for using sam-
ple data to approximate the price series in two
different ways and allows us to compare these two
model formulations.

Fitting the Model and Assumptions. Note
that we have not built the value of the network from
the number of users, the number of connections, the
number of groups, the number of traders, and so
on. Instead, we have abstracted the value directly
from network traffic (i.e., share turnover). Concep-
tually, this approach is similar to abstracting the
value of the internet from the number of “page
views” (i.e., the number of user requests to click on
a website) or terabytes of volume on the internet
over time—standardized by the number of users,
IP addresses, connections, or computers. For some
networks, measurement issues would make
abstracting from the volume of use more problem-
atic. Because of trading costs, aggregate volume as
a measure of value for the entire market network
likely gives a more accurate measure than sug-
gested by this internet example. Therefore,
throughout this article, we compare our approxi-
mations of P* and P (†,*) by using the turnover series,
TO, in place of N.6

The construction and interpretation of our
NVM, which adds to a rational DDM, rely on some
key assumptions: (1) The market network has pos-
itive value, (2) a turnover function is a useful mea-
surement of this value, and (3) volume is rational.
Regarding the last assumption, if markets have
“fads,” volume surely rises with exuberance and
falls with pessimism. In our study, we did not
attempt to parse the information and liquidity-
based volume from “noise” trades, a simplification
required by our dataset; moreover, economic mod-
eling generally starts with investor rationality in
the first iteration. With respect to the second
assumption, although we could have considered
other variables, assuming that the equilibrium is
made apparent via the execution of share trades
seems reasonable; one might well conceive of
changes in equilibrium without volume, but we
chose not to. In addition, the available aggregate
NYSE turnover data cover more than 100 years.
Under the first assumption (that the network
always has positive value—its existence does not
subtract value from stocks), our functional form
posits that the network starts out with a value of
zero (no volume), increases slowly at first, then
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more quickly, and finally “flattens out” as volume
increases. Although we considered a model with
diminishing value from too much turnover, it
delivered weaker results.

Model Results. Following Shiller (1992) in
computing P*, we can use the geometric mean of
index-level total returns over the entire sample
period, 8.94 percent, as the approximation of r.
Using N = TO, we can estimate the coefficients in
Equation A6 (  = 13.35 percent and  = 1.66),
which allows us to approximate P(†,*). Holding
these coefficients constant produces a “fixed”
function that does not change over time.

Figure 1 shows a time series of values of this
particular NV function, ; these values are used to
construct P (†,*). Relatively high in the early
decades, the network value then subsides and ulti-
mately gains strength over time. One useful point
to recall, however, is that the value of the NV
contribution is not given by the heights depicted in
Figure 1 alone but, rather, is a discounted sum of
the products of those values and the dividend pro-
cess as shown in Equation 8. 

Figure 2 and Figure 3 show the  approx- 

imation from Shiller’s DDM and the Pt(†,*)/Dt–1 of
our NVM compared with the actual Pt/Dt–1 over
various periods.

Depicting a measure of the “closeness” of the
two approximations to the actual P/D, Figure 4
includes a probability density approximation plot
for the three series. (See Appendix B for additional

technical information describing this plot as well as
other measures of the superior fit of our model.)

Time-Varying NV Function. We can now
compute P(†,*) as we did in Equation 4, with the
addition of a time-varying discount rate and a time-
varying NV function to account for investors’ non-
stationary views of the market:

(13)

where  We can then run the same
analysis as before, with the addition of a time-
varying N and . Again, with N = TO, we can
approximate P(†,*) in the time-varying case by
using recursive nonlinear least squares. We can also
incorporate the additional rule that if at any stage
in the recursive least squares we obtain a negative
value for the NV function’s coefficient, we use the
value of the closest past period’s coefficient, which
has a non-negative value. This choice, which
occurred once out of the 99 parameter estimates,
may be interpreted as investors’ not changing their
beliefs unless the new information is relevant. 

We can also compute the analogous time-
varying version of P* and compare it with the time-
varying version of P(†,*). This computation is done
as before except that the discount rate varies over
time and is defined at time t as the geometric mean
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Figure 1. Fixed NV Function, 1901–2008

Notes: This figure depicts the values of the NV function used in the construction of P(†,*) over time; each
value can be thought of as the relative magnitude of the network value for any given year. Note the low
values from the 1930s through the 1970s.
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of index-level total returns over times from 1 to t.
Figure 5 depicts the time-varying NV function by
decade. The network effect follows the previous
pattern of strong, subsiding, and then strong
again. In the early decades, the network functions
themselves (the plotted curves) are more dispersed
than they are later on. Two likely causes are that
the network effect is itself more volatile, as is the
convergence of (N, t)(·) over time to the steady state
N(·) from the fixed NV function of the full sample.

In the interest of space, analogs to Figures 2 and 3
for the time-varying NV function (which are very
similar) are not presented. 

Alternative Variables. The NVM expresses
the added value of a functioning market by incor-
porating an additional term into the DDM frame-
work. In comparing the NV approximation results
with those of the DDM, one might naturally ask
whether the gains in explanatory power are from

Figure 2. Shiller DDM Approximation of P/D, 1901–2009

Notes: This figure shows Shiller’s DDM approximation, P*/D, compared with the actual P/D. Note the
wide divergence from the actual price-to-dividend ratio over the period (with a few exceptions). The
correlation coefficient is 0.30.

Figure 3. DDM with a Fixed NV Function Approximation of P/D, 1901–2009

Notes: This figure shows P(†,*)/D, the DDM with a fixed NV function approximation, compared with the
actual P/D. The addition of an NV function that incorporates stocks’ value from the functioning of the
market provides a much better fit and is closer to actuality. The correlation coefficient is 0.70. Both the
DDM and the NVM “miss” around 2000, which could be considered a bubble period.
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the addition of our NV component or simply from
the addition of any arbitrary term. Thus, we also
considered the effect of the addition of variables
based on GDP, term spread (defined as the long-
term rate minus the short-term rate), and the SMB
and HML factors of Fama and French (1993).7 For
reasons of tractability, we considered the effect of
the addition of each factor by itself to the DDM in
the same way that we considered the effect of the
addition of turnover to the NVM. As one might
expect, the addition of each factor helps explain the
price-to-dividend ratio as compared with Shiller’s
DDM framework. The addition of our NV measure,
however, results in a material outperformance of all
the others. For example, the Shiller DDM’s mean
squared error (MSE) is 150.06 whereas the NVM’s
MSE is 101.09. The GDP model and the term-spread
model have MSEs of 117.58 and 124.74, respectively.
For the Fama–French factors (with data beginning
in 1926), we found that the Shiller model yields an
MSE of 164.16 whereas the NVM shows a signifi-
cant improvement, yielding an MSE of 107.34. The
SMB’s MSE is 142.04 and the HML’s MSE is 140.78,
which represent only marginal improvements over
the Shiller model.8 

Data
Although others have used higher-frequency data,
in our study we used low-frequency annual data for

the following reasons: (1) conformity to the spirit of
Shiller (1981), (2) avoidance of being stymied by
seasonality in dividends, (3) availability of pre-1926
data, (4) lack of need for higher-frequency data to
obtain statistically and economically meaningful
results, and (5) lack of need for potential adjustment
of the direct use of turnover. With higher-frequency
data, our turnover function might need to be mod-
ified. As Pástor and Stambaugh (2003) suggested,
volume can be high when liquidity is low; they
noted the record high volume of 19 October 1987 as
an example. An investor’s trade volume might be
high because of portfolio rebalancing during and
after a sharp price decline. A sudden perceived
deterioration in the effectiveness of the market net-
work might cause some investors to demand less
overall market participation or a different exposure
to liquidity; thus, not counting such volume in
building an NVM might be desirable.

For share turnover, we used annual NYSE Fact
Book data.9 We used the NYSE index level, together
with its total return index level, to obtain the NYSE
yearly dividends. For 1900–1925, we used the NYSE
data in Goetzmann, Ibbotson, and Peng (2001); for
1926–2008, we used the NYSE data provided to us
by Charles Jones (as used in Jones 2002). We con-
firmed that these data match CRSP data. We did not
add net data on new issues to the dividend series.

Figure 4. Probability Density Approximation Plots

Notes: This figure plots the probability density function of the actual price-to-dividend ratio as well as
the probability density function of both the Shiller DDM and the NVM approximations of the actual
price-to-dividend ratio. Using the density plot of the actual price-to-dividend ratio as a benchmark, we
can see that the density plot of the NVM approximation is much closer in shape and location to the
benchmark than is the density plot associated with the Shiller model. The density plots not only describe
the structure associated with the random variables but also may be used to compute probability
statements relating to them.
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Figure 5. Time-Varying NV Function, 1910–2008

Notes: This figure plots the values of the time-varying NV function used in the construction of P(†,*) across decades. It shows not only
how the value of the NV function changes over time but also how the NV function itself changes over time. The network effect follows
the pattern of strong, subsiding, and then strong again.

Index Level
A. 1910–1919

3.5

2.0

0
0 2.01.00.5 1.5

Index Level
C. 1930–1939

3.5

2.0

0
0 2.01.00.5 1.5

Index Level
E. 1950–1959

3.5

2.0

0
0 2.01.00.5 1.5

Index Level
G. 1970–1979

3.5

2.0

0
0 2.01.00.5 1.5

Index Level
I. 1990–1999

3.5

2.0

0
0 2.01.00.5 1.5

Index Level
B. 1920–1929

3.5

2.0

0
0 2.01.00.5 1.5

Index Level
D. 1940–1949

3.5

2.0

0
0 2.01.00.5 1.5

Index Level
F. 1960–1969

3.5

2.0

0
0 2.01.00.5 1.5

Index Level
H. 1980–1989

3.5

2.0

0
0 2.01.00.5 1.5

Index Level
J. 2000–2008

3.5

2.0

0
0 2.01.00.5 1.5

Turnover

Turnover

Turnover

Turnover

Turnover

Turnover

Turnover

Turnover

Turnover

Turnover



76 www.cfapubs.org ©2011 CFA Institute

Financial Analysts Journal

Application to Puzzles
We believe that a viable economic justification
exists for a network value theory, which, as we
have shown, explains price well. We can now test
and discuss the relationship of NV with the equity
premium puzzle, the inverse inflation puzzle, and
the news puzzle.

With low-frequency aggregate data, we can see
the effects of NV on asset prices according to eco-
nomic intuition—effects that describe asset prices
better than the alternative whereby N 0.

Equity Premium Puzzle. Cochrane (2001)
and many others have deemed the equity premium
puzzle crucial. Fama and French (2002) found that
stock returns come primarily from a large capital
gain and not from dividend growth, which prompts
two important and related questions: (1) Why did
this large capital gain occur? and (2) What is respon-
sible for the change in the equity premium? Fama
and French viewed the high ex post equity premium
as an outcome that is “unexpected” by investors
and that results from a new, lower discount rate
(i.e., lower expected future returns). Shiller (1992)
suggested “fads”; Keynes (1936) and Akerlof and
Shiller (2009) proposed “animal spirits.” Although
consumption-based capital asset pricing,
production-based asset pricing, and other models
have met with some success, the equity premium
puzzle still proves a challenge. Under our NV
framework, a possible alternative to those views is
that (1) returns vary because NV is priced with the
market multiple, which has been higher in recent
decades because NV has been higher, and (2) the
unexpected part of growth in the price of stocks has
come from the increasing aggregate NV.

Fama and French (2002) focused on the equity
risk premium and how it was influenced by the
contribution of capital gains to total returns over
1950–2000. We can use the NVM to further study
the contribution to the large, unexpected capital
gains over a similar period (1950–2007). To decom-
pose P(†,*) into two components, we can use the NV
decomposition described in Equation 9, which
allows us to separate our price approximation into
the two terms from Equations 7 and 8. During the
initial computation of P(†,*), however, we have
three contributors: dividends (the truncated sum in
Equation 7), the network (the truncated sum in
Equation 8), and the terminal value contribution
(the appropriately discounted terminal value). For
our approximations of P** and P†, we allocate the
terminal value contribution to P (†,*) proportionally
between the dividend and network contributions

to P(†,*). The percentage of the terminal value con-
tribution added to the dividend contribution is the
ratio of the dividend contribution to the sum of the
dividend and network contributions. Similarly, the
percentage of the terminal value contribution
added to the network contribution is the same ratio
but with the numerator replaced by the network
contribution. We use these “grossed up” versions
as the approximations of P** and P†. Without loss
of generality, we refer to these approximations as
simply P** and P†.

Figure 6 shows the contributions by P**/D and
P†/D to P(†,*)/D over time under the fixed NV func-
tion assumption. (The corresponding figure for the
time-varying NV function is not shown because it
looks, with the exception of its later start date, very
similar to Figure 6.) We can see that the contribu-
tion from P**/D has varied around a relatively con-
stant mean since the beginning of the 1930s. Note
the large recent contribution to price from P†/D,
which has grown fairly steadily for about 50 years.
The arithmetic mean of the historical yearly capital
gain return over this period is 9.12 percent. This
unusually large number lies at the heart of the
equity premium puzzle. The NVM uses P(†,*) to
approximate P. This approximation’s arithmetic
mean of the historical yearly capital gain return is
6.81 percent. Although this average is lower than
the realized capital gain average return, it is still
large relative to the usual measures of the risk-free
rate. Two sources that contribute to this unexpect-
edly large return are (1) the priced dividend
growth and (2) the priced network effect.

Although this partition of the capital gain
return contribution to total return is not a disjoint
one because the network effect does indeed involve
the covariation between the dividend process and
the network production process, we can show that
this network piece materially contributes to the
capital gain return.

The following approximation displays the
decomposition of the return into the sum of two
returns:

(14)
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and

so that

(15)

The linearity of the arithmetic mean allows us
to decompose the average return of the realized
capital gain approximately into an average return
contribution from  of 3.60 percent and an aver-
age return contribution from  of 3.21 percent.
This 3.21 percent additional average return contri-
bution from NV to the capital gain return helps
explain the equity premium puzzle.

In recent years, research on state-contingent
liquidity has attracted much attention. Neither
Pástor and Stambaugh (2003) nor Liu (2006), how-
ever, addressed the question of why the priced
liquidity factors they found should be so large.
Amihud (2002, p. 33) stated that “liquidity is an
elusive concept” and offered many possible defini-
tions, all of which center on the concept of the
“price to trade.” Although this view is widely held
in the academic and popular literature, liquidity
factor payoffs seem far higher than what is
required if liquidity is the cost of trading.10 If inves-
tors really care so much about the current price to
trade, why do they buy stocks? Does the varying

state of the price to trade command such high
premiums? Jones (2002) found that it does not.

Network value theory helps account for the
observed large size of the liquidity premium.
Liquidity is a part of the market network, whose
value does vary, but the value of the market net-
work grows over time and to a fairly high level.
Previous liquidity studies have described the cross
section well but have not provided a convincing
new solution to the equity premium puzzle. Our
argument—that increasing value in the market
structure itself has produced these high observed
returns, resulting in a market at a new, higher NV
state—does help solve the equity premium puzzle.
If liquidity is the cost to trade, it is a result of the
network’s existence and function. Liquidity thus
defined is not NV because NV is more than the cost
to trade. NV is the sum of the values of the network
activities of the market participants who do trade,
which is what has grown in value.

Finally, network value theory predicts that an
improving market network helps illiquid stocks
(e.g., small-cap stocks) the most and liquid stocks
(e.g., large-cap stocks) the least. In this scenario, P†

may contribute to the size premium of Banz (1981).
In Figure 6, we can see the high growth in P†/D
during well-known periods of high returns to
small-cap stocks.

Inverse Inflation Puzzle. We have argued
that NV is part of a stock’s price. Because NV is a
network and a network is a real asset, if NV does

Figure 6. Contributions by Dividends and NV, 1901–2008

Notes: The y-axis is measured in index points and represents the contribution to the NVM’s
approximation of the actual price-to-dividend ratio. This figure clearly shows that the “functioning of
the market” is not as large a part of our model’s total price approximation from the 1930s through the
1970s as it is in the earlier and later periods.
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indeed possess state-contingent value, inflation
should influence that value. The literature on
stocks’ inverse inflation relationship has assumed
some form of valuation based on stocks’ expected
cash flows. NV has no cash flow except when
investors sell stock holdings. Any unexpected
inflation should negatively affect this part of a
stock’s value. Intuitively, investors would be
expected to adjust their estimates of NV perma-
nently downward on the basis of a long-term esti-
mate of future inflation, consistent with studies
that show a positive long-run Fisher (1930) effect
on stock returns (see Anari and Kolari 2001). In the
short term, however, inflation surprises should
negatively affect NV—similar to a zero-coupon
bond’s negative reaction to inflation.

We can look at this short-term inverse inflation
effect by relating changes in the P†/D and P**/D
components to both the contemporaneous rate of
change in the U.S. Consumer Price Index (CPI) and
the previous year’s change in the CPI (lagged), as
shown in Table 1.11 Specifically, for “contempora-
neous” inflation, we used the rate of change in
inflation between the CPI’s two December levels
over the previous year; for “forecast” inflation, we
used the previous one-year lagged rate of change
in the December levels. For both the CPI and the
GDP, we used data from Shiller’s website.12 For our
data, we could not separate expected inflation from
unexpected inflation. Fama and Schwert (1977),
however, found that both expected and unexpected
inflation negatively affect stock prices.  

Our hypothesis is that inflation adversely
affects the network, which is more apparent when
the network value is a higher proportion of total
stock value. We can divide the time series of a
stock’s market value into sections for both the fixed
NV function and the time-varying NV function,
which are the two previously derived time series of
prices shown in Figure 6. We can then run ordinary
least-squares (OLS) regressions on each of the two
time series, in which the dependent variable is
either the part of the price-to-dividend ratio
approximation from P**/D, which corresponds to
the dividend contribution, or the part from P†/D,
which corresponds to the network contribution.
These variables are then regressed against a con-
stant and the CPI variable under consideration. Of
the various “full period” regressions in Table 1,
only one CPI coefficient based on P**/D has a sig-
nificant t-statistic, which is not surprising given the
different states, or regimes.

Liu (2006) commented about various politico-
economic events that affect liquidity and, therefore,
asset prices. From the perspective of both market
structure and the historical and current thinking

about market structure, one may usefully divide the
full universe of time series into three regimes: 1929
and before, the early regime; 1930–1971, the DDM
regime; and 1972–2008, the NV regime. Klein (2001)
and many others have discussed the rapid change
in investors’ perceptions, as well as those of concur-
rent economic thinkers, immediately after October
1929.13 De Long and Shleifer (1991) argued that the
large observed investment trust premiums of 1929
are evidence of a bubble. For the time series of both
the fixed NV function and the time-varying NV
function, P†/D crossed below its full-universe mean
after 1929 and remained there until the 1970s. The
famous “beauty contest” analogy of Keynes (1936)
was typical of the view that stock investing was not
advisable for the general public or institutions (the
U.S. Flow of Funds data show that individual inves-
tors directly owned more than 50 percent of equities
until the early 1980s), a view that prevailed during
both the early regime (pre-1929) and the DDM
regime (1930–1971). From the 1930s through the
1950s, however, NV was at its lowest. During those
years, dividend yield valuation methods became
very important to investment practitioners and
theorists. Graham and Dodd (1934) wrote the
influential book Security Analysis, and Williams
(1938) and Gordon and Shapiro (1956) developed
the dividend discount model. When the dividend
yield crossed the bond yield in 1958, many com-
mentators believed (and it was widely reported at
the time) that equities were priced too high.14 

A very significant change in market structure
began in December 1968, when the NYSE first
allowed discounts for institutional (large block)
trades. In 1970, institutional dollar volume
exceeded 50 percent of all dollar volume on the
NYSE. According to Jarrell (1984, p. 280), “In 1971
the SEC ordered that commissions be freely nego-
tiated on any portion of an order above $500,000.”
This series of changes culminated in the so-called
May Day event of 1 May 1975, when all NYSE
commission rates became freely negotiable. At the
time, these changes were considered watershed
events, and they are still mentioned in the financial
press. This deregulation enabled the dramatic
decline in the costs of trading stocks (Jones 2002),
and advances in technology and increased compe-
tition have allowed for even lower commission
costs since then. The impact on trading costs of the
NYSE’s switch to “decimalization” (quoting of
stocks in decimals as opposed to fractions) in 2000–
2001 is less clear in the literature. Although we
chose 1972 as the start of the NV regime, assigning
1976 as its first year made little difference in our
results (Table 1).
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Interestingly, in both the fixed and the time-
varying contemporaneous regressions of P**/D, we
found that the CPI coefficient is significantly dif-
ferent from zero for both the DDM regime and the
NV regime (1930 and beyond). For all the regres-
sions of P**/D, all the CPI coefficients are positive
except for those of the early period. Also, for the
contemporaneous full-period regressions under
both the fixed and the time-varying NV functions,
the t-statistics associated with the CPI variables are
at or near levels of significance. After decomposing

the price-to-dividend ratio into P†/D and P**/D, we
can see that P**/D increases with inflation—that is,
the Fisher relationship holds.

Intriguingly, Kaul (1987, 1990) and Lee (2009)
found that stock values in the prewar period did
not have the inverse inflation relationship that
researchers found them to have in the postwar
period. Modigliani and Cohn (1979) used a “money
illusion” theory15 to explain stocks’ inverse infla-
tion relationship, arguing that “investors capitalize
equity earnings at a rate that parallels the minimal

Table 1. Regressions of P †/D and P**/D on Inflation

Coeff. t-Stat. R2 Coeff. t-Stat. R2

Fixed NV function: Contemporaneous

1901–2008 (full period) 1901–1929 (early regime)

P**/D 11.84 1.80 0.030 –5.18 –1.65 0.091
P†/D 6.35 0.76 0.005 –3.53 –0.51 0.010

1930–1971 (DDM regime) 1972–2008 (NV regime)

P**/D 20.88 3.01 0.184 31.57 2.34 0.135
P†/D 3.44 1.05 0.027 –59.09 –3.41 0.249

Time-varying NV function: Contemporaneous

1910–2008 (full period) 1910–1929 (early regime)

P**/D 13.72 2.09 0.043 –1.58 –0.35 0.007
P†/D 9.06 1.03 0.011 –1.72 –0.62 0.021

1930–1971 (DDM regime) 1972–2008 (NV regime)

P**/D 19.84 2.99 0.182 33.48 2.37 0.138
P†/D 5.92 1.61 0.061 –55.83 –3.27 0.234

Fixed NV function: Forecast

1902–2008 (full period) 1902–1929 (early regime)

P**/D 6.61 0.99 0.009 –3.39 –1.10 0.044
P†/D 5.60 0.67 0.004 –4.11 –0.66 0.016

1930–1971 (DDM regime) 1972–2008 (NV regime)

P**/D 10.09 1.34 0.043 16.28 1.14 0.036
P†/D 1.29 0.39 0.004 –68.00 –4.15 0.330

Time-varying NV function: Forecast

1910–2008 (full period) 1910–1929 (early regime)

P**/D 7.49 1.12 0.013 –1.47 –0.33 0.006
P†/D 8.13 0.09 0.009 –1.29 –0.46 0.012

1930–1971 (DDM regime) 1972–2008 (NV regime)

P**/D 9.84 1.37 0.045 17.23 1.15 0.037
P†/D 3.72 0.99 0.024 –65.16 –4.05 0.319

Notes: In general, the impact of a stock’s inverse inflation relationship comes from P†/D, consistent with
the NV model’s prediction. This table shows OLS regressions of P†/D and P**/D decompositions for
time t on inflation, which is the percentage change in the CPI (December to December) for time t
(contemporaneous) and time t – 1 (forecast). “Fixed NV function” means that the discount rate, , and
the NV function, N, are fixed. “Time-varying NV function” means that both the discount rate and the
NV function vary.
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interest rate on bonds, rather than the economically
real rate” (p. 24)—often referred to as the Fed model
fallacy. The argument that investors make a sys-
tematic error in pricing stocks by incorrectly rely-
ing on a simple nominal pricing model has two
problems not emphasized in other studies. First,
Schwert (2003) showed that after discovery, anom-
alies tend to weaken or disappear. That the inverse
inflation relationship has gotten stronger since
1979, not weaker16—in spite of the fact that it has
attracted intense academic interest—bodes poorly
for a behavioral explanation. Second, that the
money illusion literature contains no studies of
direct investor behavior (e.g., equity fund flows)17

to buttress that argument seems curious. Our com-
peting explanation is the very simple idea that a
network is a real asset, and real assets are adversely
affected by shocks to inflation. In the earlier periods
in Table 1, investors may not have been aware of
the importance of NV; indeed, NV was not espe-
cially important for much of that time. If investors
were ever fooled, that was probably during the
DDM regime (1930–1971), when the CPI coefficient
for the P†/D contemporaneous regression had the
wrong sign, although it was relatively small. After
1971, under both the fixed and the time-varying NV
functions, the contemporaneous CPI coefficients
relative to P†/D have the predicted sign and are
both large in magnitude and highly significant—all
evidence that investors are aware of NV’s existence
and correctly price inflation shocks. Moreover, our
explanation, which accounts for the direct adverse
effect of inflation on NV, does not rely on an indi-
rect adverse effect (Roll and Geske 1983) or on the
idea of inflation as a proxy (Fama 1981). The
strength of our explanation and its consistency
with economic insight suggest a useful solution to
the inverse inflation puzzle.

Finally, Table 1 also shows the results for the
forecast regressions. A lagged change in the CPI
with the coarse time-series data that we used would
not be expected to produce a well-fitted forecast,
and we found that the CPI coefficients are almost
all smaller in magnitude and have the same sign as
under the contemporaneous regressions. As
expected, these results are generally weaker than
those for the contemporaneous regressions, except
during the NV regime, when the CPI coefficients
and t-statistics associated with the P†/D regressions
are of slightly higher magnitude—that is, a lagged
change in the CPI does forecast a decrease in this
part of a stock’s value.

News Puzzle.  The news puzzle is not that
stocks move irrationally because of the first term in
Equation 4. According to Cochrane (1991, p. 480),

“When there is fundamental news, the markets
react by about the right amount. The puzzle is that
prices also move when there is no obvious news.”
Cutler, Poterba, and Summers (1989) discussed the
apparent puzzle of large stock price movements
and the lack of any corresponding news that should
affect stock price fundamentals: “Our results sug-
gest the difficulty of explaining as much as half of
the variance in aggregate stock prices on the basis
of publicly available news bearing on fundamental
values” (p. 9). Jacklin, Kleidon, and Pfleiderer
(1992) and Grossman (1988) built information mod-
els in their attempts to supply a theory to account
for the large price decline of 19 October 1987. In
general, researchers have not provided a funda-
mental rationale for the crash; explanations have
generally focused on the market’s functioning, con-
sistent with our thesis.

Finance and investment texts often discuss the
“real” and the “financial” sectors, with the financial
sector pricing financial claims without friction and
not producing a wedge in prices. As we have
argued, the network value of stocks is priced—not
just a wedge but also an expansion—and thus new
information about the performance of the market
in its role as a provider of this network is important.
Viewed in this way, the market making its own
news is not a puzzle. What happens to the market
is news. A market malfunction, such as the crash of
19 October 1987 or the credit crisis of late 2008,
should cause the value of stocks to fall.

Conclusion
We have argued for the addition of a term to valu-
ation and asset pricing models that incorporates
the functioning of the market exchange. This idea
is the network value theory. We used network
structure arguments to assign a price to the net-
work and then used turnover to build a version of
NV. When we allow for the existence of NV, we are
able to see immediately that it can be helpful in
concisely addressing well-known asset pricing
puzzles. Network value theory offers convincing
ways to solve the equity premium, inverse infla-
tion, and market-making-its-own-news puzzles.

Asset pricing theory has relied heavily on the
assumption of complete markets, in which every-
one has complete information and can trade
instantly with anyone, anywhere, at no cost. But
that is a simplifying assumption. Amplifying
O’Hara (2003), the “as if” of Friedman (1953, p. 40)
has become today’s “as is.” If everyone “knew”
everything, there would be no need for—or value
of—the internet; and if product markets were per-
fectly liquid, there would be no point in having
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inventory. These activities have costs but also con-
tribute value. Similarly, if we assume that everyone
does not know everything about expected payoffs
for asset prices and that the facilitation of trade is
not free—that investors instead rely on a network
to help determine prices (information production)
and to facilitate and finance trading (liquidity) and
that this network has value—then we have our
network value.

Interestingly, the portion of a stock’s value
contributed by NV is consistent with the body of
research that demonstrates a premium value for
publicly traded stocks vis-à-vis nonpublicly traded
stocks (see, e.g., Silber 1991). Longstaff (2009, p.
1122) provided a theoretical liquidity model
whereby “heterogeneity in patience” between
investors can have large asset pricing implications.
This type of theoretical work can be considered “on
the demand side” and helps answer the question,
What are investors willing to pay for convenience?
Network value theory can be considered “on the
supply side” and helps answer the question, How
do liquidity and information suppliers structure all
their activities, and what is the value of that? Our
study addresses the latter.

Some might object that our NV function mistak-
enly ascribes value to the “noise traders.” As we
have shown in our discussion of inflation, however,
the market prices NV, which has a “real” value.
Perhaps some of the volume is “irrational” and NV
is too large. The current asset pricing theory alterna-
tive, however, is N  0, which produces the puzzles.
Assuming a nontrivial N helps solve the puzzles.
In addition, the assumption that investors are ratio-
nal is the usual starting point in economic model
building. Further, the news anomaly research has
found large stock price swings (regularly account-
ing for half the variance) for reasons other than news
pertaining to stock earnings. Are investors really so
irrational that they needlessly incur trading costs, or
are they impounding news pertaining to NV?
French and Roll (1986) showed that stock return
variation is higher when the market is open, which
is exactly consistent with our NV model.

A myriad of related issues await further
research: NV and the closed-end-fund puzzle; the
NV expected contribution to the returns of other
markets, especially emerging markets (although
consistent volume data, even within the same mar-
ket, are not easily available); other ways to mea-
sure NV; and disentangling NV from other factors,
such as size. Also, our approach to modeling the
various network states could be considered for
other networks. Although we have shown that
growth in network value is quite steady and is a
material part of the increase in a stock’s value, that

this improvement in financial intermediation
might provide a similar boost to prices in the next
50 years is difficult to imagine. Nevertheless, that
a financial production function exists (Snigaroff
2000)—that real and measurable value is built by
the network of market practitioners—certainly
seems less bleak than the nihilistic assumption that
their efforts contribute nothing.

We are grateful for helpful discussions with Allan
Timmermann and Bruce Lehman, both at the Univer-
sity of California, San Diego, and with Mike Munson
at Denali Advisors.

This article qualifies for 1 CE credit.

Appendix A. From the DDM to 
the NVM
This appendix shows how our NVM differs from
the DDM and formally defines the NV function, .

Dividend Discount Model
Beginning with

(A1)

we take expectations, assume that E(Rt|It) = r,t,
and obtain

(A2)

Iterating this process, using the tower property of
conditional expectation, and assuming that the
growth rate of the numerator is less than the dis-
count rate, r, we obtain the dividend discount model

(A3)

which leads to an expression for the price-to-
dividend ratio by dividing by Dt–1:

(A4)

Note on the Functional Form
The specific bounded function that we use to accom-
plish this idea of increasing followed by decreasing
returns to scale in the network formation is the
cumulative distribution function associated with
the normal distribution, a readily recognized func-
tion. Although we believe that a linear function is
an incorrect economic specification, we tried that
approach and obtained somewhat weaker results.
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(The real value of our argument is in the addition of
a term for the value of stocks; the choice of function
is not the most significant part of our argument.)
Thus, we define the NV function, N, through the
cumulative distribution function, , of a normally
distributed random variable as

(A5)

where the subscript N on the NV function  indi-
cates the NV function’s dependence on the under-
lying time series used to measure the network’s
production. We also estimate the parameters  and
 by the usual point estimates

and

where n represents the number of data points in
the sample. The parameter , which represents the
scaling of the function in the fit, is given by the
estimate provided by an application of a nonlinear
least-squares regression that estimates the pair (,
) in the return equation given by Equation A6.

We incorporate the NV function into a DDM
framework by expressing the total return as a con-
stant minus our function of network production. To
stay partly in the DDM framework, we must divide
our function by the current price. This step also
allows us to keep our network component separate
and to prevent it from being completely algebra-
ically absorbed into the discount rate. This formu-
lation, however, leads to the problem of an unbal-
anced regression model because the returns are
being modeled by a constant minus the ratio of a
bounded function to a growing price series. Thus,
our additional term is decaying and contains a time
dependence not inherent in the underlying return
series. We thus multiply our additional component
by the dividend series. The result is that our function
of the network proxy is multiplied by the dividend
yield, which creates a balanced model and brings us
closer to stationarity as a whole. We thus arrive at
Equation A6, which gives the future return process:

(A6)

where � is an i.i.d. (independent and identically
distributed) process with respect to time that satis-
fies E(�t+1|It) = 0 for each time t. Taking expecta-
tions, we obtain

(A7)

Proceeding as before with the DDM and assuming
that the sums are finite, we obtain

(A8)

Then, dividing by Dt–1, we obtain an expression for
the price-to-dividend ratio:

(A9)

Appendix B. Technical 
Information on the Superior 
Fit of the NV Model
This appendix provides technical information on
the superior fit of our NV model.

Statistical Fit
Table B1 provides summary statistics based on the
data from the NV and Shiller approximations of
P/D in both the fixed NV function and the time-
varying NV function cases. The table confirms the
graphical depictions in Figures 2, 3, and 4. We also
use three common measures of closeness in the
density space: the Kullback–Leibler distance and
the L1 and L2 norms (their formal definitions
appear later in this appendix). Our NV model
displays a better statistical fit than the Shiller
model in all the metrics except one (the ratio of
standard deviations).  

With respect to the ratio of standard deviations,
the literature at the time of Shiller (1981) unambig-
uously favored ratios near to or greater than 1.
Today, the literature suggests that this condition is
not so important. One of Shiller’s arguments con-
cerning volatility is based on the ratio of variances:
Assuming that a detrending step produces station-
ary processes and that the proposed model for
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prices is correct, Jensen’s inequality implies that the
var(P*/D)  var(P/D). We point out, however, that
this argument breaks down if the detrending step
does not result in a stationary process. If the station-
arity assumption does not hold, then we may con-
clude only that   for each
fixed time t and we may not draw the previous
conclusion regarding variation over time from this
spatial variance inequality, which may hold only for
each fixed time t. Therefore, the fact that this
inequality across times is violated when using the
sample data—in both Shiller’s model and the NV
model (see Table B1)—is not in itself a contradiction
of the efficient market model. An estimator that
displays more volatility over time does not imply
that it is superior to one that displays less volatility.
As we can see in Figures 2 and 3 and in Table B1,
greater variation over time does not imply that a
model will have a closer fit, even allowing for dif-
ferent measures of closeness.

Forecast Encompassing
We also ran two regressions involving the price-to-
dividend ratio squared-error processes of both the
Shiller model and the NV model to gauge the fore-
casting abilities of each model. We first regressed
the Shiller model’s squared error against a constant
and P(†,*)/D. We found that the t-statistic (5.12) of
the coefficient for P(†,*)/D is significant, and thus the

fixed NV model helps explain the Shiller model’s
error process. We also regressed the NV model’s
squared-error process against a constant and the
Shiller approximation of P/D, or P*/D. We found
that the t-statistic (1.28) of the coefficient for P*/D is
not significant and that we thus cannot conclude
that the Shiller model explains the NV model’s
error terms. Therefore, the NV model is said to
forecast encompass the Shiller model, which demon-
strates the NV model’s superior explanatory
power. For the time-varying function, the forecast-
encompassing results for the NV model compared
with those for the Shiller model yield t-statistics of
1.22 and –1.39 in the same order as previously
described. Because both t-statistics are not signifi-
cant, we are unable to say that either model forecast
encompasses the other.

Density Measures of Closeness
The Kullback–Leibler distance is defined by

(B1)

The L1 and L2 norms are given by the following
formulas:

(B2)

Table B1. Summary Statistics for the NV and Shiller Approximations of P/D
Fixed Time Varying

Comparison
Shiller 
P*/D

NV
P(†,*)/D

Shiller
P*/D

NV
P(†,*)/D

Mean squared error: 150.06 101.09 273.08 123.51

Standard deviation ratio: 0.82 0.54 0.76 0.59

Correlation of P/D and 0.30 0.70 –0.05 0.71

Density approximations

Kullback–Leibler distance 0.35 0.19 0.47 0.31
L1 distance 0.70 0.43 0.83 0.55
L2 distance 0.13 0.08 0.14 0.10

Notes: This table presents the statistics for goodness of fit. It compares the NV and Shiller approxima-
tions of the actual price-to-dividend ratio in both the fixed NV function and the time-varying NV
function cases.
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Notes 
1. Shiller (1981) used the term efficient market model, which we

use here.
2. As we discuss later in the article, we used a function of

turnover to build our network value function. At times,
however, we use the term volume to refer to the level of
trading on the exchange. Both terms refer to the number of
shares, not dollars.

3. The intuition for confidence is simple; similar to the value
of the internet increasing marginally with traffic as the
number and frequency of users increase with users’ expec-
tations of traffic, the market’s network value increases with
more participants and a greater volume of trading.

4. See Appendix A for the details of the calculation.
5. Graphical examples of this function are given in Figure 5.
6. That is, share turnover from an econometric perspective;

share volume standardized via division by shares outstand-
ing is preferred to volume alone. Turnover is a composite
of volume and shares outstanding, however, and Pontiff
and Woodgate (2008) demonstrated that the number of
shares outstanding for stocks describes security returns in
the cross section. We also built an NV function by using a
volume series V in place of N with the following detrending
procedure: We first regressed log(Vt) against a + bt and
used eb as the long-term growth rate. The detrended series
is then given by vt = (Vt)eb(T – t), which is equivalent to
growing the time t volume at the long-term growth rate
until terminal time T. We obtained materially stronger
results for this NV function than for the NV function with
turnover in each of our puzzles (discussed later in the
article). The use of detrended series has issues of its own,
however, and we show only results for the version of NV
with turnover. Bruce Lehman and Allan Timmermann pro-
vided helpful comments on the detrending issue.

7. For the annual nominal GDP and the long-term rate (10
years), we used the data from R.J. Shiller’s website
(www.econ.yale.edu/~shiller/data.htm). For the short-
term rate, we used the “Bills - nominal - rates” series from
Jeremy Siegel’s website (www.jeremysiegel.com). The
Fama–French factor return data consist of the historical
benchmark returns from Kenneth R. French’s website
(http://mba.tuck.dartmouth.edu/pages/faculty/
ken.french)—in particular, the annual series. According to
the “Description of Fama/French Benchmark Factors” sec-
tion of the website, “SMB (Small Minus Big) is the average
return on three small portfolios minus the average return
on three big portfolios,” and “HML (High Minus Low) is
the average return on two value portfolios minus the
average return on two growth portfolios.”

8. Under other methods of comparison (see Table B1 in
Appendix B), the NVM generally outperforms each of the
other variables. 

9. We used data from the “NYSE Historical Statistics” tables
at www.nyxdata.com. In the NYSE Fact Book, yearly share

turnover “is calculated by multiplying the year-to-date
average daily volume by the number of trading days in the
current year and dividing by the average of total shares
outstanding at the end of the previous year and total shares
outstanding at the end of the given month [for December,
the year-end shares outstanding].” 

10. Lo, Mamaysky, and Wang (2004) seemed to offer a reason
for such large premiums in proposing a power law function
with respect to fixed trading costs. Arguing that “small
fixed costs can have a significant impact on asset prices,”
they suggested that “most dynamic equilibrium models
will show that it is quite rational and efficient for trading
volume to be infinite when the information flow to the
market is continuous” (p. 1056) and demonstrated with
their model that even moderate costs lead to “large ‘no-
trade’ regions” (p. 1054).

11. For an excellent review of the various techniques applicable
to the study of stocks’ inverse inflation relationship, see
Anari and Kolari (2001).

12. For inflation, we used data from the annual CPI-U (Con-
sumer Price Index for All Urban Consumers) as obtained
from Shiller’s website (www.econ.yale.edu/~ shiller/
data.htm); for years prior to 1913, the annual CPI-U data are
“spliced to the CPI Warren and Pearson’s price index.”
Shiller’s website has two sets of CPI data; we used the rate
of change in the monthly December index levels from the
“Irrational Exuberance” worksheet. Shiller’s annual set of
data is also available but uses a January end date to conform
to his earlier work.

13. The infamous quote attributed to Irving Fisher—“Stock
prices have reached what looks like a permanently high
plateau”—may be apocryphal (see Klein 2001). Klein also
described Fisher’s public concern about deflation, which
began in January 1930.

14. We have read numerous stories in the New York Times from
1958 to 1962 and beyond that discuss this event, which was
viewed as a novelty. At the time, however, some commen-
tators asserted that the same thing had also occurred in 1929.

15. This theory is one of the leading contenders, among many,
for solving the inverse inflation puzzle. For one of the more
recent and complete reviews of this literature, see Lee (2009).

16. Using our annual data and model, we found the effect
strongest after 1979.

17. Having evaluated investment management firms over the
course of several hundred visits, we can recall only one asset
manager who admitted to using the Fed model in valuation
work (the admission was vivid because it was widely
viewed as naive—a view the firm acknowledged without
prompting). Still, the manager remained at least 95 percent
invested in stocks, as is typical of all institutional invest-
ment managers.
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